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Final Report for Robust Requirements Tracing 
via Internet Search Technology: Improving an 

IV&V Technique - Phase II 

1. Introduction 

The problem statement and project objectives are presented below. 

1 .I Problem Statement 

The fundamental purpose of Verification and Validation (V&V) and Independent 
Verification and Validation (IV&V) is to insure that the right processes have been used to 
build the right system. To that end, we must verify that the approved processes and 
artifacts are guiding development during each lifecycle phase as well as validate that all 
requirements have been implemented at the end of the lifecycle. A requirements 
traceability matrix (RTM) is a prerequisite for both of these. Though Computer-Aided 
Sofiware Engineering tools such as DOORS [Telelogic], RDD-100 [Holagent], and 
Rational Requisitepro [Rational] can assist, we have found that often developers do not 
build the RTM to the proper level of detail or at all. V&V and IV&V analysts are faced 
with the time consuming, mind numbing, person-power intensive, error prone task of 
“after the fact” requirements tracing to build and maintain the RTM. Examples of 
V&V/IV&V activities that can’t be undertaken without an RTM include, but are not 
limited to: verification that a design satisfies the requirements; verification that code 
satisfies a design; validation that requirements have been implemented and satisfied; 
criticality analysis; risk assessment; change impact analysis; system level test coverage 
analysis; regression test selection. V&V/IV&V can be viewed as the backbone of safety- 
critical, mission-critical, and Critical-Catastrophic High Risk (CCHR) systems. 
Similarly, the RTM can be viewed as the backbone of V&V/IV&V. 

~~ - 
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Requirements tracing consists of document parsing, candidate link generation, 

candidate link evaluation, and traceability analysis. As an example, consider 
requirements in a high level document such as a System Specification being traced to 
elements in a lower level document such as a Software Requirement Specification. 
Generally, after the documents have been parsed and requirements have been extracted 
from the two document levels, an analyst will manually read each high level requirement 
and low-level element and assign keywords to each. A keyword-matching algorithm is 
then applied to build lists of low-level elements that may potentially satisfy a given high- 
level requirement. These are called candidate links. There are two commonly accepted 
metrics in evaluating candidate links: the percentage of actual matches that are found 
(recall) and the percentage of correct matches as a ratio to the total number of candidate 
links returned (precision). The analyst reviews the candidate links and determines which 
are actual links (candidate link evaluation). Finally, after tracing is complete, the analyst 
generates reports of the high level requirements that do not have children and the low 
level elements that do not have parents (traceability analysis). 

Current approaches to after-the-fact tracing have numerous shortcomings: they require 
the user to perform interactive searches for potential linking requirements or design 
elements, they require the user to assign keywords to all the elements in both document 
levels prior to tracing, they return many potential or candidate links that are not correct, 
they fail to return correct links, and they do not provide support for easily retracing new 
versions of documents. To ensure requirement completion and to facilitate change 
impact assessment, a method for easy “after-the-fact,’ requirements tracing is needed. 

1.2 Project Objectives 

There are three major objectives to this phase of the work. 

(1) Improvement of IR methods for IV&V requirements tracing. Information Retrieval 
methods are typically developed for very large (order of millions - tens of millions and 
more documents) document collections [Baeza-Yates] and therefore, most successfully 
used methods somewhat sacrifice precision and recall in order to achieve efficiency. At 
the same time typical IR systems treat all user queries as independent of each other and 
assume that relevance of documents to queries is subjective for each user. The IV&V 
requirements tracing problem has a much smaller data set to operate on, even for large 
scfiware developme;;: pmj eets; the set of cjueries is predeiemiiiieb by the high-level 
specification document and individual requirements considered as query input to IR 
methods are not necessarily independent from each other. Namely, knowledge about the 
links for one requirement may be helpful in determining the links of another requirement. 
Finally, while the final decision on the exact form of the traceability matrix still belongs 
to the IV&V analyst, hisher decisions are much less arbitrary than those of an Internet 
search engine user. All this suggests that the information available to us in the framework 
of the IV&V tracing problem can be successfully leveraged to enhance standard IR 
techniques, which in turn would lead to increased recall and precision. We developed 
several new methods during Phase 11. 
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(2) IV&V requirements tracing IR toolkit. Based on the methods developed in Phase I 
and their improvements developed in Phase 11, we built a toolkit of IR methods for IV&V 
requirements tracing. The toolkit has been integrated, at the data level, with SAIC’s 
SuperTracePlus (STP) tool. 

(3) Toolkit testing. We tested the methods included in the IV&V requirements tracing 
IR toolkit on a number of projects. 

2. Accomplishments 

The two major objectives, improvement of IR methods and implementation of IR 
methods for IV&V requirements tracing, are discussed below. 

2.1 Improvement of IR Methods 

During the course of the project, we have studied the applicability of basic Information 
Retrieval (IR) methods for tracing requirements. While traditional “bread-and-butter” IR 
approaches appear to produce good results in traditional IR domains, requirements 
tracing presents a number of challenges to such methods. In particular, such traditional 
IR methods are designed to work on very large (hundreds of thousands to billions of 
documents) document collections. They are also designed to work on relatively large 
documents. In the requirements tracing setting, the size of the collection is reasonably 
small: on the order of hundreds or thousands of individual requirements, while individual 
requirements are usually relatively small - one to three sentences long. 

With this in mind, we first considered the behavior of three traditional IR methods on 
requirements tracing problems. The methods implemented were: 

(A)TF-IDF vector retrieval. Vector model represents each document (requirement) 
and each query (higher-level requirement) as vector of keyword weights and 
computes similarity between documents and queries as a cosine of the angle 
between the vectors. 

(A)TF-IDF vector retrieval with simple thesaurus. An extension of the standard 
TF-IDF retrievl vith a simp!e thesaurw of synonyms md a~ttonyms. 

(A) Probabilistic Retrieval. Also known as Binary Independence Retrieval or NaNe 
Bayes Retrieval, this method attempts to estimate the probability that a given 
document is relevant to the query. 

In addition, we are currently in the process of adoption and development of two more IR 
methods for Requirements Tracing: 

(a) Latent Semantic Indexing (LSI). LSI uses Single-Value Decomposition (SVD) 
for the matrix of keyword weights constructed by the TF-IDF method. It allows 
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us to reduce the dimensionality of the problem and “condense” information, 
potentially capturing some “hidden concepts” in the document collection. 

(b) Retrieval for Sinale Documents. A number of Text Mining methods have been 
recently proposed to construct descriptions of individual documents based on co- 
occurrence of terms in document sentences. We are, at present, working on 
adopting these techniques for the purpose of Information Retrieval. 

Together with the three IR methods already developed, we have implemented user 
feedback processing techniques. Feedback processing allows our requirements tracing 
software to establish a dialog with the analyst doing requirements tracing. Our IR 
methods provide the analyst with the list of candidate links. The analyst examines some 
of them and determines whether or not matches are found. This information is fed back 
into the IR method, which, in turn, produces a new list of candidate links that tries to take 
advantage of the information communicated by the analyst. 

More detailed information about the methods used in this work can be found in the 
papers attached in Appendix A. 

RETRO Architecture 

1 processor J p i l a  jy, 

n 

Figure 1. Architecture of RETRO. 

2.2. Implementation of IR Methods for IV&V Requirements Tracing 

This section describes the details of implementation of the IR methods for the purposes of 
Requirements Tracing. Our work yielded two concurrent developments: the standalone 
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requirements tracing tool RETRO (REquirements TRacing On-target), and a package 
integrating our IR methods into SAIC's SuperTracePlus (STP) tool. 

2.2.1 RETRO - Standalone tool 

First, the existing set of standalone tools were documented and debugged. Next, these 
tools were integrated with a JAVA GUI (recall that the standalone tools (IR methods) 
have been developed in C++). Some parts of the GUI were modified based on user 
feedback. The other tools were maintained as well. The Feedback loop tool was then 
developed and integrated with RETRO. A new method for probabilistic IR had also 
been integrated. 

The overall architecture of RETRO is shown in Figure 1. The GUI is used to set up the 
project. Once the high- and low-level requirements are specified, and the IR method is 
chosen, the Build component, constructs the representation of the requirements and stores 
it on disk. Next, the specified method from the IR Toolbox is used to produce the first 
list of candidate links. This list, encoded in XML (See Appendix B for the DTD and 
examples), is then, optionally, processed by the Filtering component, designed to make 
the list somewhat smaller, without sacrificing accuracy. Using the GUI (Figure 2), the 
analyst checks a number of links and delivers hisher decisions back to RETRO. 
Encoded in XML, this information is provided to the Feedback Processor, which 
prepares the data for the next application of the IR method. 

Next, we ported the Linux version of RETRO to Windows. The Windows version of 
RETRO uses FLEX for Windows and also XERCES Java and C++ parsers for XML. 

2.2.2. Integration with SAIC 

The main goal in integrating with SAIC's STP tool was to allow our process of candidate 
link generation substitute, at user's option, the traditional process employed in STP, 
which requires manual keyword assignment. The key aspects of integration involve 
porting the IR toolkit of RETRO to Windows, and providing the facilities for passing 
information back and forth between the toolkit and the main body of STP. 

We wrote several procedures in JAVA to convert the SFEP input data from SAIC's 
format into the format that RETRO accepts. We also wrote procedures to convert the 
XML results produced by RETRO into an ASCII delimited format that SAIC requires. 

We also wrote a procedure in VB which SAIC will use to call our Feedback methods. 
The input parameter to this procedure is a set of "yeslink It and 'holink'l information 
about each parent-child pair in the candidate links. The feedback method will take this 
information and update the candidate links. The result will be sent back to SAIC's STP 
tool in ASCII delimited format. 
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Figure 2. RETRO GUI. 

2.3 Toolkit Testing 

We have conducted a series of experiments designed to determine the applicability of our 
approach to requirements tracing. Our first objective was to measure the quality 
(accuracy) of the candidate link lists generated by the implemented IR methods and the 
improvement. The standard IR measures of precision and recall have been used to 
evaluate accuracy. 

Our second objective was to study the question of method qp!icaMity in a mcre 
general sense. As we explain in [RE04], obtaining a high quality list of candidate links is 
not enough: requirements tracing is the process, by its nature, driven by a human analyst. 
Therefore, the real decisions about the success of our approach can only be made by 
studying how well the human analyst can perform requirements tracing using our tools. 

The latter question has two components: objective and subjective. The objective 
component concerns the ability of our software to improve the candidate link lists taking 
advantage of the analyst activity in trace verification. In particular, this involves treating 
analyst's choices as feedback and processing it in order to find a better list of candidate 
links. Here, our interest lies not only in the pure accuracy of candidate link lists, but also 
in the quality: we want to ensure as the analyst proceeds to evaluate individual candidate 
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links, true links will tend to “rise” to the top of candidate link lists produced by the 
software, while false positives will tend to drop. A number of special metrics were 
designed to address the issue of measuring the change in the quality of the candidate link 
lists in addition to the accuracy. 

We also note that the subjective component of testing must take into account the overall 
usability of the software and other related human factors. For example, determination of 
the circumstances under which the analyst work tends to lead to best improvement. 

In [RE031 we have reported some preliminary results on the accuracy of the main 
methods tested so far: TF-IDF and TF-IDF with simple thesaurus. In [RE041 we have 
reported the results of our fkrther experiments related to testing the objective component. 
These involved simulating a variety of “perfect” analyst behaviors for user feedback 
(“perfect” means providing the Feedback Processor only with correct information) and 
recording the changes in the accuracy and quality of the candidate link lists. The results 
obtained in the testing are discussed in detail in [RE041 (see Appendix A) and were very 
encouraging. ’ 

2.4 Data Used 

The main dataset that we have been working with consists of open source documents for 
the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) [Level 1 A, 
MODIS]. The dataset contains 19 high level and 49 low-level requirements. The trace 
for the dataset was manually verified and 42 correct links were found. 

We also have three other datasets, in varying degrees of completion. The International 
Space Station provided us with several levels of documents. We do not have the answer 
set for these though. Similarly, the Metrics Data Program provided us with a nice data 
set called CM-1. We have traced this dataset, but are still in the process of verifying that 
the trace is correct so that we can use it as a test set. Finally, we have a very small 
dataset from an open source imaging radio telescope called the Low Frequency Array 
(LOFAR). This dataset has been useful to us because the wording in both document 
levels is nearly identical and there is much use of many generic words. It is a particularly 
challenging dataset that we are using to improve OUT methods. 

2.5. Publications 

During Phase I1 of the work, we wrote two papers, listed below and attached as Appendix 
1 and Appendix 2. The first paper was submitted to the International Conference on 
Software Engineering (ICSE). It was not accepted for publication. [Note that the typical 
acceptance rate is below 15%] The second paper was submitted to the International 
Conference on Requirements Engineering and is currently under review. Authors will be 
notified in April. 

Jane Hayes,. Alexander Dekhtyar, Senthil Sundaram, Sarah Howard, “On Effectiveness of 
User Feedback-based Information Retrieval Methods for Requirements Tracing,” 
submitted to the International Conference on Software Engineering in September 2003. 
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Jane Hayes, Alexander Dekhtyar, Senthil Sundaram, Sarah Howard, “Helping Analysts 
Trace Requirements: An Objective Look,” submitted to the International Conference on 
Requirements Engineering in January 2004. 

3. ConclusiondFuture Work 
Below, we present our conclusions for this work as well as the research areas that are still 
before us. 

3.1 Conclusions 

The conclusions we have reached after Phase 2 of the project are two-fold. 

(A) Traditional “bread-and-butter” IR methods allow us to drastically decrease the 
time it takes for the analysts to obtain the lists of candidate links. Recall values 
are quite high, that is, the vast majority of the true links are captured one way or 
another. Precision, on the other hand, is fairly low. At the same time, the overall 
accuracy of our best method (TF-IDF thesaurus) exceeded that of the state-of-the- 
art requirements tracing tool in a head-to-head experiment [RE03]. 

(B) The biggest potential (Le., measured objectively) improvement in the 
requirements tracing process occurs when IR methods generating candidate link 
lists are combined in an iterative process with user feedback (aided by filte@g of 
the candidate link lists) and feedback processing. 

3.2 Future Work 
Our future work will proceed in a number of directions: (a) study of the subjective 
aspects of analyst work with RETRO, including the study of usability of the tool; (b) 
development of more complex methods for candidate link list generation; and (c) 
extension of the functionality of RETRO and its ability to work with the analysts. Each 
direction is briefly addressed below. 

3.2.1 Usability Feedback Needs 

As our work proceeds, we hope to gain valuable information from those who use RETRO 
and/or the STP tool with our IR toolbox. Some examples of usability feedback of interest 
follow: 

0 Is the user interface easy to understand? 
0 Is the user interface easy to use? 
0 Are unnecessary steps or mouse clicks required in order to perform work? 
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Is the data arranged on the screen in such a way as to facilitate the tracing process? 
How many candidate links are you willing to examine for each high level 
requirement? 
How many iterations of tracing with feedback are you willing to perform? 
Is it convenient to start working with the tool on a new project? 
Do you have suggestions regarding the input formats for the data? 

comprehensive study of the usability of RETRO, and analyst tendencies in 
requirements tracing procedures is in preparation. 

3.2.2 Planned Future Work 

We plan to continue to study feasibility and applicability of different IR methods to the 
problem of candidate link generation. As mentioned in Section 2.1, two methods are 
currently in the works. Other methodology, involving more complex supporting artifacts, 
or models can be evaluated in the future. In addition to evaluation of the accuracy, 
feasibility of using each particular method must be addressed: generation of certain 
artifacts may be a time-consuming, human labor-intensive process. 

In parallel, we are planning to continue the development of RETRO. Without the 
benefit of the usability/analyst tendencies study, the current version of RETRO does not 
take into account a variety of important information that it can easily collect about the 
modus uperundi of a specific analyst who is using it. Knowing such information may 
allow us to better analyze the candidate link lists constructed by the IR toolbox methods 
and determine filtering techniques and policies to be used, that are likely to improve the 
work of the analyst. By examining the tracing process with the analyst in the loop, we 
hope to improve not only the recall and precision of candidate link lists, but also improve 
the “tracing experience” of the IV&V analyst who is performing the work. This should 
also contribute to improved answer sets as analysts will be willing to spend more time 
performing the trace. Improved answer sets will in turn improve the overall IV&V 
process as so many IV&V activities, such as change impact assessment and testing, 
depend on the traceability information. 
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Abstract 
This paper presents an approach for improving 
requirements tracing by adding user feedback processing 
to information retrieval (IR) techniques. Specijkally, we 
focus on improving recall and precision in order to 
reduce the number of missed traceability links as well as 
to reduce the number of irrelevant potential links that an 
analyst has to examine when performing requirements 
tracing. An iterative user feedback processing method 
was applied to two IR algorithms to address this problem. 
We evaluated our algorithms by comparing their results 
and performance to an oracle (the correct trace results). 
Initial results suggest that user fiedback processing 
increases recall by about 20% while also decreasing the 
number of irrelevant potential links, At the same time the 
quality of candidate link lists improves, with true links 
occupying more prominent positions. 

Research 
1. Introduction 

Despite the existence and increasing adoption of 
Computer-Aided Software Engineering (CASE) tools, 
there are still many software projects for which no 
Lt;yuiremenis trace exists. Lack of this infomiation in a 
typical development effort hinders debugging, testing, 
change impact analysis, and cost estimations, just to 
mention a few. For a safety-critical or mission-critical 
project, lack of this information could easily halt work. 
For example, an instrumentation and control (I&C) 
software subsystem of a nuclear power plant will not pass 
safety requirements if it cannot prove that all lines of 
source code emanate from approved requirements. 
Requirements tracing addresses this. 

I^-... 

Department of Computer Science 
Science University of Kentucky 
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Unfortunately, requirements tracing is not a pleasant 
task. There is currently much manual, boring, person time 
that is required. Take for example the task of tracing a 
requirement specification to all its children design 
specifications. Analysts must interactively search through 
large softcopy requirements specification and alternately 
search through several design specifications to fmd 
potential links or traces. In addition to being distasteful, it 
is highly error prone work. Automated assistance for this 
is largely aimed at aiding developers to build the trace as 
they perform software development. But often that does 
not occur, and there is a lack of automated tools for 
assisting analysts who must perform tracing “after the 
fact.” 

This research addresses the requirements tracing 
problem through application of information retrieval 
methods. Previously, we focused on the problem of 
generating candidate links, discussed in [ I  I]. 
Specifically, the tf-idf vector model and simple thesaurus 
model were applied and found to be effective and 
efficient. Our focus has now broadened to the overall 
requirements tracing process. The penultimate goal is to 
develop an efficient, effective tracing tool that makes the 
best use of the analyst’s time and expertise. A typical 
requirements tracing process used by independent 
verification and validation (IV&V) agents includes two 
stages of interest: candidate link generation and 
assessment of these links. Existing requirement tracing 
tools such as SuperTracePlus [10,15], as well as [ I l l ,  
provide assistance for the first stage but not the second. 

This work builds on the successes of [ 1 13 to address the 
second stage of candidate link assessment. To that end, 
we have implemented a feedback method that allows the 
analyst to evaluate a small subset of the candidate links at 
each step. This information is used by the tool to generate 
improved candidate links on the next step. We found that 
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this approach to candidate link evaluation leads to 
improvement of the quality of the links and provides a 
structured way for the analysts to work with the data. In 
particular, the feedback method allowed us to find around 
80% of the links within a trace (e.g., of a requirements 
specification to its children design specifications) with one 
in four of the candidates being actual links. The feedback 
processing method allowed us to improve the percentage 
of found links by 19% while doubling the signal-to-noise 
ratio. We have also discovered that minimal interaction 
with the analyst yields better, or at least as good, results as 
high interaction. In addition, filtering techniques allowed 
us to increase signal-to-noise ratio from 1:3 to over 2:1, 
while not leading to significant decreases in number of 
true links found. 

There are two important metrics in evaluating 
requirements traces: the percentage of actual matches that 
are found (recalf) and the percentage of correct matches 
as a ratio to the total number of candidate links returned 
(precision). Recall and precision values for current 
tracing methods are not widely known or generalized. 
This research is aimed at improving the state of the art of 
after the fact requirements tracing. 

IR background, IR methods, and the relevance feedback 
method applied are presented in Section 2. The tool and 
the results obtained from evaluation are discussed in 
Section 3. Section 4 addresses related work. Finally, 
Section 5 presents conclusions and areas for future work. 

2. Information retrieval (IR) for 
requirements tracing 

The main problem studied in the field of Information 
Retrieval (IR) is determination of relevant documents in 
document collections given user-specified information 
needs [8,9]. Most IR methods operate by converting each 
document in the collection into a mathematical 
representation that tries to capture the information content 
of the document and comparing such representations to 
similar representations of user information needs 
(queries). The majority of IR methods are keyword-based: 
the document and query representations incorporate 
information about the importance of specific keywords 
found in the document. 

2.1 Requirements Tracing as an IR problem 

Generally speaking, requirements tracing can be viewed 
as a problem of document comparison. High- and low- 
level requirements form two collections of documents. 
The analyst then compares high-/low-level requirement 

pairs and for each such pair makes an explicit or implicit 
similarity judgment. 

Such a setup appears to be similar to the basic IR 
problem. In forward requirements tracing, the low-level 
requirements form the document collection and the high- 
level requirements form the set of queries. For each such 
high-level requirement query, relevant low-level 
requirements would, ideally, be the ones that trace back to 
it. In [ 1 I] we have studied the applicability of some of the 
traditional IR methods to the problem requirements 
tracing. We found that simple IR methods are not enough 
for robust determination of the trace. Simple keyword- 
based retrieval using vector model showed insufficient 
recall and poor precision. We were able to increase the 
recall to about 85% by using a simple thesaurus of terms 
and key phrases, however, precision still remained around 

Such a showing is hardly surprising. While on the 
surface requirements tracing shares a lot of common traits 
with the traditional Information Retrieval tasks, there are 
also significant differences that make direct applications 
of IR methods less effective. These differences are: 
1. Size of the domain. A typical size of a real requirements 

tracing project does not exceed thousands of 
requirements for both levels. Smaller projects have 
the numbers of requirements in hundreds. At the same 
time, typical IR methods are designed to work on 
document collections that contain millions of 
documents. The larger the size of the collection, the 
more processing time is needed, but also, more 
information can be gathered about the collection and 
the vocabulary used will be larger, more diverse. 

2.  Size of requirements. Individual requirements in the 
requirements and design documents are, typically, no 
longer than a couple of sentences. Such small texts 
mean fewer keywords per document in the 
constructed document representations. Together with 
smaller number of documents (requirements) 
themselves, this gives rise to anomalies when one or 
two casual keyword matches in unrelated 
requirements get high relevance scores. This stands in 
contrast with traditional IR domains where documents 
are much iarger ana thus have expressive 
representations not prone to the influence of a single 
keyword. 

3 .  Interdependence of requirements. In a standard IR 
system all queries issued by users are considered to 
be independent. The results of one query are not 
really compared with the results of another query 
directly (although using collaborative filtering 
techniques it is possible to suggest relevant 
documents based on results of prior similar queries). 
In requirements tracing, because all queries come 
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from the same document, and some of them represent 
related requirements, comparison of candidate links 
for such related requirements may yield extra 
information. Standard IR methods, however, do not 
do that. 

We can attempt to improve the performance of IR 
methods in requirements tracing in two ways. The first is 
implementation of more complex algorithms that take 
advantage of more than just straightforward keyword 
matches between the documents. The second way is to use 
iterative techniques, such as user feedback processing to 
improve the performance of already implemented methods 
- our current work. 

The use of feedback processing is particularly 
appropriate for the requirements tracing problem because 
we believe that despite the clear need to automate the 
process itself, the final word on the trace has to belong to 
a human analyst. The use of feedback processing inserts 
the analyst into the appropriate place in the process of 
requirements tracing: the analyst will serve as a facilitator 
of the process and validator of the results. 

Given an IR algorithm, the user feedback loop proceeds 
as follows. On the first iteration, the analyst chooses the 
high- and low-level requirements and starts the IR 
algorithm. Once the algorithm produces the candidate 
trace, the analyst examines it and makes decisions 
concerning the candidate links. The analyst can vote to 
include a suggested candidate link in the trace, exclude it 
from the trace, or leave the status of the link as-is for the 
moment. At some point, the analyst may stop the 
examination process and submit the intermediate results. 
The analyst’s choices of relevant (included in the trace) 
and irrelevant (excluded from the trace) requirements 
cause the feedback processing part of the loop to change 
the representation of the high-level requirements. This 
causes the subsequent rerun of the IR algorithm to find 
more requirements similar to the ones deemed relevant 
and relegate requirements found to be similar to the 
irrelevant ones. The analyst then can continue the same 
process with the newly obtained and improved list of 
candidate links. The loop repeats until the analyst is 
completely satisfied with the trace. The key issue to note 
here is h i t  &e w,dyst does iioi hxve to examine every 
single candidate link on any of the steps. Standard 
feedback processing methods show good results for very 
few answers provided by the user and tend to converge in 
very few iterations. 

2.2 Methods applied 

For this study’ we have used two IR algorithms 
implemented previously [ 1 11: vanilla vector retrieval, 
otherwise known as rf-idf retrieval and vector (tf-id0 

retrieval with a simple thesaurus. On top of these 
algorithms we have implemented the Standard Rochio [8] 
feedback processing method. 

2.2.1 Tf-Idf model 

Standard vector model (also known as tf-idf model) for 
information retrieval is defined as follows. Each document 
and each query are represented as a vector of keyword 
weights. More formally, let V = {kl, ..., kN) be the 
vocabulary of a given document collection. Then, a vector 
model of a document d is a vector (wl, ..., wN) of 
keywords weights, where wi is computed as follows: 

w, = tf; ( d )  - idf,. 
Here ll;(d) is the so-called termfrequency: the frequency 
of keyword ki in the document d, and id$, called inverse 

documentfrequency is computed as idf, = log, - [; 1, 
where n is the number of documents in the document 
collection and dJi is the number of documents in which 
keyword ki occurs. Given a document vector 
d=(wl, ..., wN) and a similarly computed query vector 
q=(qI, . . . ,qN ) the similarity between d and q is defmed as 
the cosine of the angle between the vectors: 

N 

C w i  *qi 
sim(d,q) = cos(d,q) = , :=’ 

N 

2.2.2 Tf-Idf + Simple Thesaurus 

The second method used in [ 111 extends tf-idf model 
with a simple thesaurus of terms and key phrases. A 
simple thesaurus T is a set of triples <t, t ’ , @ - ,  where t 
and t ’  are matching thesaurus terms and a is the similarity 
coefficient between them. Thesaurus terms can be either 
single keywords or key phrases - sequences of two or 
more keywords. While thesauri organized in such a way 
are indeed quite simple - they do not contain any 
ontologies or taxonomies, it is still possible to express a 
number of important features using them. In particular, 
one can specify using simple thesauri: 

1. Synonyms: 

2. Important key phrases: 
(error, fault, I .  0) 

(Greenwich meridian, Greenwich meridian, 1.0); 
3. 

4. 

Similar key phrases: 
(sequence of keystrokes, standard input, 0.8); 
System IDS: 
(Device-Not-Found, Error Message, 0.7); 
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5 .  Abbreviations: 
(RE, Requirements Engineering, 1.0). 

The vector model is augmented to account for thesaurus 
matches as follows. First, all thesaurus terms that are not 
keywords (Le., thesaurus terms that consists of more than 
one keyword) are added as separate keywords to the 
document collection vocabulary. For example, after 
processing the second example from the list above, the 
vocabulary will contain entries for “Greenwich, ” 
“meridian, ” and “Greenwich meridian. ” The weight of a 
vocabulary entry (single keyword, or a thesaurus term) in 
a document remains unchanged. However, given a 
thesaurus T={<ki,kj, aJ>}, and document and query 
vectors d=(w/ ,..., wN) and q=(ql, ..., qN), the similarity 
between d and q is computed as: 

2.3 Incorporating relevance feedback from 
analysts 

Relevance feedback is a technique to utilize a users 
input to improve the performance of the retrieval 
algorithms. Relevance feedback techniques adjust the 
vector weights of the query according to the relevant and 
irrelevant documents found for it, as supplied by the user. 
The document vectors remain unchanged. The methods 
for changing the weights are based on the ideal formula: 

where R is the number of documents relevant to a specific 
information need in the entire document collection and N 
is the size of the collection. 

However, this formula cannot be used since finding the 
set of relcvant documeiits is the goal of the a!go;it!~. 
Instead, given a query q, the result of executing an IR 
algorithm on q and a list of relevant and irrelevant 
documents contained in it, an approximation needs to be 
constructed. More formally, let q be a query vector, and 
Dq be a list of document vectors returned by some IR 
method given q. Further, assume that D has two subsets: 
Dr of size R of documents relevant to 4 and Dirr of size S 
of irrelevant documents that have been provided by the 
user. Note that Dr .and Dirr are disjoint, but do not 
necessarily cover the entire set Dq. One of the most 

popular methods for computing the new representation of 
query q is Standard Rochio [a]: 

Intuitively, query q is adjusted by adding to its vector a 
vector consisting of the document vectors identified as 
relevant, and subtracting from it the sum of all document 
vectors identified as false positives. The first adjustment 
should lead to the inclusion of documents similar to the 
relevant ones into the answer set on the next step - thus 
potentially increasing recall. The second adjustment 
should result in documents similar to the known irrelevant 
documents getting significantly lower relevance rating and 
dropping fiom the answer set, thus potentially increasing 
precision. The constants a, B, ? in the formulas above can 
be adjusted in order to emphasize such positive or 
negative feedback as well as the importance of the original 
query vector. Once the query vectors have been 
recomputed, the selected IR algorithm is run with the 
modified query vectors. This cycle can be repeated until 
the user is satisfied with the results. After all of the 
vectors for the high level requirements have been 
modified, the retrieval formulas are computed again, and 
the new results are displayed. 

3. Evaluation 

This section presents the prototype tool, the tests 
used to evaluate our approach, and a discussion of results. 

3.1 Requirements tracing tool 
A prototype requirements tracing tool has been built and 

used in the tests. The tool implements three IR methods, 
as described in [l l] ,  and Standard Rochio feedback 
processing. Only two of the IR methods have been used 
in this study (see Section 2.2). For each method, the tool 
implements three tasks: a) building document models, b) 
building query models, and c) generating candidate link 
lists. Feedback processing can be used with any of the IR 
methods. The front-end to the tool has been implemented 
in Java, whereas aii the iR aigorithms and feedback 
processing are implemented as a C++ toolkit with uniform 
APIs, allowing for simple extensions of the toolkit with 
implementations of new methods. XML has been used for 
uniform data transmission between tool components. Use 
of the tool for the study is further described in Section 3.2. 

3.2 Study Design 
In our study, we used slightly modified implementations 

of tf-idf and simple thesaurus retrieval algorithms applied 
in [Il l .  The improvements were mostly internal and did 

A-I4 



not affect the output of the methods. These two algorithms 
have been incorporated in a prototype requirements 
tracing tool. In addition, the relevance feedback loop 
using Standard Rochio method has been implemented 
within the tool. 

To assess the effectiveness of requirements tracing using 
relevance feedback method, we performed tests of both 
the tf-idf and thesaurus approaches. We used a modified 
dataset from [l 13 based on open source NASA Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
documents [12,14]. The dataset contains 19 high level 
and 49 low-level requirements. The trace for the dataset 
was manually verified and 42 correct links were found. 

To ensure that we evaluated the effect of relevance 
feedback processing on recall and precision and not on 
analyst ability to correctly select matches from a candidate 
match list, we designed the tests as follows. Graduate 
student volunteers (analysts) used the verified trace (the 
“right answers”) to provide feedback to our tracing tool. 
The study design is described in Table 1. At the beginning 
of each test, the analyst loaded the dataset into the tool 
and selected the IR method: tf-idf or simple thesaurus. 
The method was run on the dataset and the results were 
displayed for the user to observe and modify. 

Analyst interaction with the requirements tracing tool 
via the feedback loop was guided by the Behavior 
parameter. Top i behavior means that at each iteration, the 
analyst was to correctly mark the top i unmarked 
candidate links from the list for each high-level 
requirement. For example, for each high level 
requirement, the analyst implementing Top 1 behavior 
examined the top candidate link suggested by the IR 
procedure. If this link had not been marked yet, the 
analyst determined whether the link was correct (using the 
answer set provided), and selected a “link” or “no link” 
choice to provide relevance feedback to the system. If the 
top link had already been marked as “link” on previous 
steps, the analyst looked for the first unmarked link in the 
list for that requirement. After repeating the Top i 
relevance feedback procedure for each high level 
requirement, the analyst submitted the answers to the 
requirements tracing tool. The tool processed relevance 
feedback using Standard Rochio procedure and submitted 
the new queries to the IR method. New results were 
reported to the analyst, starting a new iteration. The 
process continued for eight iterations or until the analyst 
noticed that the results had converged. 

The key question the tests were designed to answer is: 
0 How does the quality of the list of candidate links 

change from iteration to iteration? 

Tf-idf 

Table 1. Experiment Design. 

~~ I method 
1 Standard I TOD 1 8 

I IR method I Feedback I Behavior I # Iterations I 

Tf-idf 

~~ 

method 

Rochio Top 2 
Standard Top 1 8 I Rochio I Top2 I 11 Thesaurus Standard 

We evaluated the quality of the list of candidate links 
using a number of metrics. In particular, we considered 
the following questions: 

How many real links are found and how many 
false positives are returned? 

What is the structure of the list of candidate 
links? Are true links more prominent than false 
positives? 

The first question was addressed by computing precision 
and recall for each iteration of each test. To answer the 
second question we have introduced a number of 
secondary measures, designed specifically to compare and 
contrast the positions and/or relevances of true links and 
false positives. The metrics considered are: 

0 

a. ARE Average relevance of a true link in the list; 
b. ARF: Average relevance of a false positive in the list; 
c. DrffAR = ART - AIU? the difference between average 

relevances of true links and false positives; and 
d. Lag: average number of false positives with higher 

relevance coefficient than a true link. 

3.3 Results 
The precision and recall results obtained in our tests are 

summarized in Table 2. In each cell, precision is 
indicated first followed by recall. The maximal precision 
and recall achieved in each experiment are highlighted 
and the maximal values for each retrieval method are also 
underlined. The results are also visualized in Figure 1, 
which contains the precisiodrecall trajectories for all 
experiments, grouped by the 1R method used (top: tf-idf, 
bottom: simple thesaurus). From these results we can 
make the following observations: 
- Both tf-idf and simple thesaurus retrieva1,when used 

without feedback, produce moderately high 
reca11(57.1% for tf-idf and 64.2% for simple 
thesaurus), but the precision is very low: 1 1.3% for tf- 
idf and 12.2% for simple thesaurus. 
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Table 2. Results of Experiments: Precision and Recall. 

- With relevance feedback, both tf-idf and simple the Top 2 behavior. The best overall recall numbers 
thesaurus retrieval exhibited similar recall patterns. were obtained at iteration 5 in Top 1 behavior for tf- 
Over the course of the iterations, the recall increased idf and at iterations four and six in Top 2 behavior for 
by about 19%, before either stabilizing or somewhat simple thesaurus.? 

occurs fairly early on: at iterations 2, 3 or 4 (this can smaller for the simple thesaurus retrieval method. 
- With relevance feedback, both tf-idf and simple be seen on the trajectories of all experiments in 

thesaurus retrieval exhibited similar precision Figure 2). After this jump, the recall tended to level 
patterns. On early iterations, precision decreased off while precision continued to grow. 
slightly. But starting with iteration 3 9  it would grow As seen from the results and discussion above, while the 
monotonicab' with each new iteration- For and use of relevance feedback allowed us to achieve high (up 
Top precision eventualb' to 83%) recall, the precision continued to be the Achilles 

20% --- a 90%-100% increase from the heel of the approach: even in the best cases, only I out of 
original precision values. every 4 - 5 candidate links was correct. To see if precision 
The quality of answers obtained for behaviors with can be improved without significant damage to recall, we 
little interaction with the system (Top 1 and Top 2) have applied a number of filters, designed to throw out 
was as good, or better than, that for high-interaction some of the candidate links from the list produced on each 
-.,..I..V." ~. -~ 2 and Top 4). In fact, for both tf-idf iteration. In particular, we looked at the following three 
and simple thesaurus retrieval, the highest overall filters: 
precision numbers were obtained at iteration eight in 

decreasing in Some cases. The drop-off in was - In all tests the major quantitative jump in recall 

- 

Table 3. Filtering Summary. 

'Within 0.5 Best 63.6 33.3 54.7 54.7 53 61.9 40 57.1 
Difference 46.3 45.2 29.7 -28.6 -21.4 

Top42 Best 64.1 59.5 71.7 66.6 73.8 73.8 61.9 61.9 
Difference 46.8 -1 9 46.7 -16.7 49.2 -9.5 43.3 -1 9 

28.4 21.4 -23.8 

- 
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Figure 5.  Lag for Thesaurus Retrieval Tests. 
? Above 0.1. A candidate link was thrown out if its 

Within 0.5. For each high-level requirement, the 
relevance of each candidate link was compared with 
the relevance of the top candidate link. The candidate 
link was retained If$ its relevance was within 0.5 of 
the relevance of the top link. 
Top 42. For each high-level requirement i the top ki 
candidate links were retained, where ki is the number 
of true links for i in the answer set, This way, the 
filtered answer set contained 42 (or fewer) candidate 
links distributed exactly as in the answer set. 

Table 3 summarizes the results of applying different filters 
to the candidate link lists. For each filter and for each test 
run, the best precisionhecall pair had always been 
achieved on the last iteration of the experiment - a 
contrast with the results without filtering. For each filter, 
the table also contains the differences in percentages for 
recall and precision between the list with no filtering and 
the list obtained by applying the filter. As evidenced in the 

I G I G V U I W  WdS UGlVW V.I. 

- 

? 
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table, the improvement in precision is significant for most 
filter-IR algorithm-behavior combinations. For tf-idf 
retrieval, Above 0.1 and Within 0.5 filters produce 
precision of 35-50%, with typically a two-fold increase 
from the “vanilla” list. At the same time, recall suffers a 
significant (20-42%) decrease, with the only notable 
exception being Above 0. I for Top 2 behavior (a drop of 
11.9%). Top 42 filter, as expected, shows even bigger 
improvement in precision, with the drop in recall being 
around 14-17% for all cases but Top 1 .  Notice that for this 
filter, the precision is expected to be equal to recall, or 
slightly exceed it if the size of the filtered list of candidate 
links is smaller than 42. More importantly, for the simple 
thesaurus retrieval, both Above 0.1 and Top 42 
demonstrate an increase in precision with only moderate 
penalty in recall. The best results were obtained for Top 3 
behavior where for both filters the decrease in recall was 
less than IO%, while the increase in precision was over 
50% for Above 0. I and exactly 300% for Top 42. 

Filtering the lists of candidate links is one of the ways to 
study the inner structure of the lists of candidate links: the 
filters work well when disproportionately many “bottom” 
candidate links are false positives. Thus, the better the 
degree of separation between the true links and the false 
positive links in the lists, the more effective the filters will 
be in increasing precision without compromising recall. 
We have therefore also used other metrics to study our 
progress in the degree of separation in the lists generated. 

Figure 2 shows the changes in the DiffAR metric: the 
difference in average relevances between the true links 
(ART) and false positives (ARF). Intuitively, the larger 
the difference, the more likely it is that most of the true 
links will be at the top of the candidate link lists for high- 

difference between ART and A M  is around 0.2 at iteration 
0 for both tf-idf and simple thesaurus retrieval algorithms. 
At subsequent iterations for both retrieval algorithms and 
all behaviors, DiYAR grows significantly ranging from 
0.489 to 0.758 at the last iterations. In most cases, the 
value of ART monotonically grows from iteration to 
iteration. At the same time, the value of ARF drops by 
about one half on the first iterations of each test, then 
slowly %rows back towards its original value (around 1.11, 
sometimes slightly exceeding it. Figure 3 shows the 
progress of ART and ARF metrics for simple thesaurus 
retrieval with Top 2 behavior. 

While ART, ARF and DiffAR measure the quantitative 
separation between true links and false positives, Lug is a 
measure of qualitative separation. Lug is defined for each 
true link in the list as the number of false positives for its 
high-level requirement that have a higher relevance (i.e., 
the number of false positives that are higher up in the list). 
The Lug of a list of candidate links is the average lug of 

. - - _ _ _  - ---. ---- -, _-- --.-, --- 

its true links. Note that when Lug=0, total separation of 
links has been achieved: all true links appear higher up in 
the lists of candidate links than all false positives. Figures 
4 and 5 show the progress of the Lug measure for tf-idf 
and thesaurus retrieval tests respectively. It can be 
observed that in all experiments Lug behaved in a similar 
manner. For both tf-idf and thesaurus retrieval, Lug starts 
at just above 6. During the first 1-2 iterations, Lug grows, 
and for some experiments can go as high as 10. But at 
subsequent iterations, Lug drops significantly, and in all 
but one experiment, finishes under 3. High-interaction 
behaviors (Top 3 and Top 4) appear to produce better 
(smaller) Lugs: the final iterations of these methods for tf- 
idf give Lugs of 2.28 and 1.13, while for thesaurus 
retrieval they are 1.47 and 2.2 1. 

3.4 Discussion of results 
During the tests we have established that for both of the 

IR methods, using relevance feedback mechanisms 
consistently improves recall by just under 20%. We have 
found that precision also improves, occasionally by as 
much as 100%. But, because the starting precision is 
rather small, the improvement is not significant in absolute 
numbers. However, we found that application of filtering 
techniques is promising. In many cases, filtering resulted 
in drastic improvement in precision, while the decrease in 
recall was not very significant. Our tests have also 
produced evidence that with each iteration, the generated 
lists of candidate links tend to be of better overall quality: 
true links rise to the top, while false positives tend to sink 
to the bottom. Also, the gap between relevance weights 
for true links and false positives grows from insignificant 
(0.02) to large (0.6-0.8 in most cases). This suggests that 
analyst e m r ~  111 proviaing relevance reeabactc pays on: it 
is possible to generate lists of candidate links with high 
precision and high recall, saving analyst time during the 
final verification of the trace. 
4. Related work 

There are two areas of interest: requirements tracing 
and IR as it has been applied to the problem of 
requirements analysis. Each is addressed below. 

4.1. Requirements tracing 

We have been tackling the requirements tracing problem 
for many decades. In 1978, Pierce [I61 designed a 
requirements tracing tool as a way to build and maintain a 
requirements database and facilitate requirements analysis 
and system verification and validation for a large Navy 
undersea acoustic sensor system. 
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Hayes et a1 [lo] built a front end for a requirements 
tracing tool called the Software Automated Verification 
and Validation and Analysis System (SAVVAS) Front 
End processor (SFEP). This was written in Pascal and 
interfaced with the SAVVAS requirements tracing tool 
that was based on an Ingres relational database. SFEP 
allows the extraction of requirement text as well as the 
assignment of requirement keywords through the use of 
specified linkwords such as shall, must, will, etc. These 
tools are largely based on keyword matching and 
threshold setting for that matching. Several years later the 
tools were ported to hypercard technology on Macs, and 
then to Microsoft Access and Visual Basic running on 
PCs. This work is described by Mundie and Hallsworth in 
[15]. These tools have since been further enhanced and 
are still in use as part of the Independent Verification and 
Validation (IV&V) efforts for the Mission Planning 
system of the Tomahawk Cruise Missile as well as for 
several NASA Code S science projects. 

Abrahams and Barkley, Ramesh, and Watkins and Neal 
[l ,  17, 221 discuss the importance of requirements tracing 
from a developer's perspective and explain basic concepts 
such as forward, backward, vertical, and horizontal 
tracing. Casotto [6] examined run-time tracing of the 
design actvity. Her approach uses requirement cards 
organized into linear hierarchical stacks and supports 
retracing. Tsumaki and Morisawa [2  13 discuss 
requirements tracing using UML. Specifically they look 
at tracing artifacts such as use-cases, class diagrams, and 
sequence diagrams from the business model to the 
analysis model and to the design model (and back) [21]. 

There have also been significant advances in the area of 
requirements elicitation, analysis, and tracing. Work has 

analysis of phoneme occurrences to categorize and 
analyze requirements and other artifacts [19]. Bohner's 
work on software change impact analysis using a graphing 
technique may be useful in performing tracing of changed 
requirements [4]. Anezin and Brouse advance backward 
tracing and multimedia requirements tracing in [2,5]. 

Cleland-Huang et a1 [7] propose an event-based 
traceability technique for supporting impact analysis of 
performance requirements. Data is propagated 
speculatively into performance models that are then re- 
executed to determine impacts from the proposed change. 
Ramesh et a1 examine reference models for traceability. 
They establish two specific models, a low-end model of 
traceability and a high-end model of traceability for more 
sophisticated users [18]. They found that a typical low 
end user created traceability links to model requirement 
dependencies, to examine how requirements had been 
allocated to system components, to verify that 
requirements had been satisfied, and to assist with change 
control. A typical high-end user, on the other hand, uses 

.~ - . .  . .  . .. ~. 

traceability for full coverage of the life cycle, includes the 
user and the customer in this process, captures discussion 
issues, decision, and rationale, and captures traces across 
product and process dimensions [ 181. 

4.2 IR in requirements analysis 

Recently, a number of research groups has considered 
using Information Retrieval methods for various problems 
in requirements analysis. Two research groups, in 
particular, worked on the requirements-to-code tracebility. 
Antonio, Canfora , De Lucia and Merlo [3] considered 
two IR methods: probabilistic IR and vector retrieval (tf- 
idf). They have studied the traceability of requirements to 
code for two datasets. In their testing, they retrieved top i 
matches for each requirement for i=1,2, ..., and computed 
precision and recall for each i. Using improved processes, 
they were able to achieve 100% recall at 13.8% precision 
for one of the datasets. In general, they have achieved 
encouraging results for both tf-idf and probabilistic IR 
methods. Following [3], Marcus and Maletic [I31 applied 
latent semantic indexing (LSI) technique to the same 
problem. In their work they used the same datasets and the 
same retrieval tests as [3]. They have shown that LSI 
methods show consistent improvement in precision and 
recall and were able to achieve combinations of 93.5% 
recall and 54% precision for one of the datasets. 
While [3] and [ 131 studied requirements-to-code 
traceability, in [I 11 we have addressed the problem of 
tracing requirements between different documents in the 
project document hierarchy. In the preliminary study [I I] 
we have implemented three methods: tf-idf, tf-idf with key 
phrases and tf-idf with simple thesaurus and have reported 

requirements documents. In our study, retrieval with 
simple thesaurus outperformed other methods on our test 
dataset, producing recall of 85% with precision 40%. 
This work continues the research started in [ 1 11. Here, we 
extend the baseline tf-idf and thesaurus retrieval methods 
with analyst relevance feedback processing capability. 

5. Conclusions and future work 

~~ , ---o --- - - I-_ ---- --- ---- -- 

In this paper we have studied the effect of relevance 
feedback processing on the success of IR methods for 
requirements tracing. We have found that taking into 
account even limited user feedback results in consistent, 
and at times, significant increases both in precision and 
recall on subsequent iterations. 
While the results of the study are encouraging, they also 
show clear avenues for improvement. Among them we 
identify the following: 
a. implementation of more intricate IR algorithms; 
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b. 

c. 
W e  note that current study, despite using student 
volunteers in experiments, was an objective evaluation of 
the quality of results produced by the IR and relevance 
feedback. algorithms. In practice, however, it will be up to 
human analysts to supply relevance feedback, and as such, 
it is impossible to envision analysts to be 100% correct in 
their decisions. Therefore, in order to make the 
requirements tracing tool useful for IV&V analysts, we 
need to study how they tend to work with the candidate 
link lists produced by the software. 

a comparative study of different relevance feedback 
techniques; 
study of the work of analysts in requirements tracing. 

Acknowledgments 

Our work is funded by NASA under grant NAGS-1 1732. Our 
thanks to Ken McGill, Tim Menzies, Stephanie Ferguson, Pete 
Cerna, Mike Norris, Bill Gerstenmaier, Bill Panter, the 
International Space Station project, Mike Chapman and the 
Metrics Data Program, and the MODIS project for maintaining 
their website that provides such useful data. We thank Hua 
Shao and James Osborne for assistance with the tf-idf 
algorithm. We thank hies Chemmannoor, Ganapathy 
Chidambaram, Ramkumar Singh S, and Rijo Jose Thozhal for 
their assistance. 

6. References 
[l] Abrahams, M. and Barkley, J., "RTL Verification 

Strategies,'' IEEE WESCON/98, 15 - 17 September 1998, 

[2] Anezin, D., "Process and Methods for Requirements 
Tracing (Software Development Life Cycle)," Dissertation, 
George Mason University, 1994. 

L j J  Antoniol, ti., Canfora, Ci., Casazza, Ci., De Lucia, A., and 
Merlo, E. Recovering Traceability Links between Code and 
Documentation. IEEE Transactions on Software 
Engineering, Volume 28, No. 10, October 2002,970-983. 

[4] Bohner, S., "A Graph Traceability Approach for Software 
Change Impact Analysis," Dissertation, George Mason 
University, 1995. 

[5] Brouse, P., "A Process for Use of Multimedia Information 
in Requirements Identification and Traceability," 
Dissertation, George Mason University, i992. 

[6] Casotto, A.. Run-time requirement tracing, Proceedings of 
the IEEEIACM International Conference on Computer- 
aided Design, Santa Clara, CA, 1993. 

[7] Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K.; Hu, 
H., Xia, J. (2002) Automating speculative queries through 
event-based requirements traceability. Proceedings of the 
IEEE Joint International Requirements Engineering 
Conference (K'OZ), Essex, Germany, 9-13 September, 
2002, pages: 289-,296. 

pp. 130-134. 

[8] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information 
Retrieval, Addison-Wesley, 1999. 

[9] Frakes, W. and Baeza-Yates, R. (Eds.), Information 
Retrieval: Data Structures and Algorithms, Prentice Hall, 
1992. 

[ 101 Hayes, J. Huffman. Risk reduction through requirements 
tracing. In The Conference Proceedings of Software 
Quality Week 1990, San Francisco, California, May 1990. 

[ 1 11 Hayes, J. Huffman; Dekhtyar, A. Osboume, J. "Improving 
Requirements Tracing via Information Retrieval," accepted 
to the International Conference on Requirements 
Engineering, to be presented in Monterey, California, 
September 2003. 

[ 121 Level 1A (L1 A) and Geolocation Processing Software 
Requirements Specification, SDST-0594 GSFC SBRS, 
September 11, 1997. 

[ 131 Marcus, A.; Maletic, J. "Recovering Documentation-to- 
Source Code Traceability Links using Latent Semantic 
Indexing," Proceedings of the Twenty-Fifth International 
Conference on Software Engineering 2003, Portland, 
Oregon, 3 - 10 May 2003, pp. 125 - 135. 

[ 141 MODIS Science Data Processing Software Requirements 
Specification Version 2, SDST-089, GSFC SBRS, 
November 10, 1997. 

Requirements analysis 
using SuperTrace PC. In Proceedings of theAmerican 
Society of Mechanical Engineers (ASME) for the 
Computers in Engineering Symposium at the Energy & 
Environmental Expo 1995, Houston, Texas. 

[ 161 Pierce, R. A requirements tracing tool, Proceedings of the 
Software Quality Assurance Workshop on Functional and 
Performance Issues, 1978. 

I1 71 Ramesh. R.. "Factors Influencinp Reauirements 
I raceaoimy rracnce," Lommunicauons 01 me ALM, 

December 1998, Volume 41, No. 12 pp. 37-44. 

[ISIRamesh, B.; Jarke, M. Toward reference models for 
requirements traceability; IEEE Transactions on Software 
Engineering, Volume 27, Issue I,  January 2001, 
page(s): 58 -93. 

[ 191 Savvidis, I. "A Multistrategv Framework for Analyzing 
System Requirements (Software Development)," 
Dissertation, George Mason University, 1995. 

[20]Sparck Jones, K. and Willet, P. Readings in Information 
Retrievql Morgan Kaufmann Series in Multimedia 
Information and Systems, Morgan Kaufmann, 1997. 

[21]Tsumaki, T. and Morisawa, Y. "A Framework of 
Requirements Tracing using UML," Proceedings of the 
Seventh Asia-Pacific Software Engineering Conference 
2000,s - 8 December 2000, pp. 206 - 213. 

Tracing," IEEE Soflare,  Volume 1 I, Issue 4, July 1994, 

[ 151 Mundie, T. and Hallsworth, F. 

[22] Watkins, R. and Neal, M. "Why and How of Requirements 

pp. 104-106. 

A- 20 



University of Kentucky Technical Report TR 392-04 
Helping Analysts Trace Requirements: An Objective Look 

Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, Sara Howard 
Computer Science Department 

University of Kentucky 
hayes@cs. u@. edu, dekhtyaracs. uky. edu, shzrt2@uky. edu, sehowa2@u@. edu 

Abstract 
This paper addresses the issues related to improving the overall 
quality of the requirements tracing process for independent 
Verification and Validation analysts. The contribution of the 
paper is threelfold: we define requirements for a tracing tool 
based on analyst responsibilities in the tracing process; we 
introduce several new measures for validating that the 
requirements have been satisfied; and we present a prototype 
tool that we built, RETRO (Wquirements TRacing On-target), 
to address these requirements. We also present the results of a 
study used to assess RET.RO’s support of requirements and 
requirement elements that can be measured objectively. 

Research 

1. Introduction 

The hndamental purpose of Verification and Validation 
(V&V) and Independent Verification and Validation 
(IV&V) is to insure that the right processes have been 
used to build the right system. To that end, we must 
verify that the approved processes and artifacts are 
guiding development during each lifecycle phase as well 
as validate that all requirements have been implemented at 

matrix (RTM) is a prerequisite for both of these. Though 
Computer-Aided Software Engineering tools such as 
DOORS [23], RDD-100 [12], and Rational Requisitepro 
[20] can assist, we have found that often developers do 
not build the RTM to the proper level of detail or at all. 
V&V and lV&V analysts are faced with the time 
consuming, mind numbing, person-power intensive, error 
prone task of “after the fact” requirements tracing to build 
and maintain the KTM. Examples of ‘V’&ViIV&V 
activities that can’t be undertaken without an RTM 
include, but are not limited to: verification that a design 
satisfies the requirements; verification that code satisfies a 
design; validation that requirements have been 
implemented and satisfied; criticality analysis; risk 
assessment; change impact analysis; system level test 
coverage analysis; regression test selection. V&VlIV&V 
can be viewed as the backbone of safety-critical, mission- 
critical, and Critical-Catastrophic High Risk (CCHR) 
systems. Similarly, the RTM can be viewed as the 
backbone of V&V/IV&V. 

UIG G11U VI LllC I I I C G ~ G I G .  A IGqUllGll lGllW: U X G i l D l l l l y  

Requirements tracing consists of document parsing, 
candidate link generation, candidate link evaluation, and 
traceability analysis. As an example, consider 
requirements in a high level document such as a System 
Specification being traced to elements in a lower level 
document such as a Software Requirement Specification. 
Generally, after the documents have been parsed and 
requirements have been extracted from the two document 
levels, an analyst will’ manually read each high level 
requirement and low-level element and assign keywords to 
each. A keyword-matching algorithm is then applied to 
build lists of low-level elements that may potentially 
satisfj a given high-level requirement. These are called 
candidate links. There are two commonly accepted 
metrics in evaluating candidate links: the percentage of 
actual matches that are found (recalC) and the percentage 
of correct matches as a ratio to the total number of 
candidate links returned (precision). The analyst reviews 
the candidate links and determines which are actual links 
(candidate link evaluation). Finally, after tracing is 
complete, the analyst generates reports of the high level 
reouirements that dn not have children and the Inw IPVPI 
elements that ao not nave parents (traceability analysis). 

Current approaches to after-the-fact tracing have 
numerous shortcomings: they require the user to perfonn 
interactive searches for potential linking requirements or 
design elements, they require the user to assign keywords 
to all the elements in both document levels prior to 
tracing, they return many potential or candidate links that 
are not correct, they fail to return correct links, and they 
do not provide support for easily retracing new versions of 
documents. To ensure requirement completion and to 
facilitate change impact assessment, a method for easy 
“after-the-fact” requirements tracing is needed. 

Previously, we focused solely on the problem of 
generating candidate links, discussed in [ 1 11. 
Specifically, we showed that information retrieval (IR) 
methods were effective and efficient when used to 
generate candidate link lists. Our focus has now 
broadened to the overall requirements tracing process. 
The penultimate goal of this NASA-funded research is to 
develop an efficient, effective tracing tool that makes the 
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best use of the analyst’s time and expertise. To that end, 
this paper provides three contributions: we investigate the 
analyst responsibilities in performing tracing; we derive 
tool requirements from these; and, we present a prototype 
tool, RETRO, and evaluate it with respect to the 
requirements. 

The paper is organized as follows. Section 2 presents 
the requirements for an effective requirements tracing 
tool. Section 3 discusses our tool and how it satisfies the 
requirements of Section 2. Section 4 discusses the results 
obtained from evaluation. Related work in requirements 
tracing is presented in Section 5. Finally, Section 6 
presents conclusions and areas for future work. 

2. Requirements for an effective 
requirements tracing tool 

To set the stage for our work, we must first understand 
the responsibilities of an analyst who has been tasked to 
perform a requirements trace. The analyst is required to: 
(a) identify each requirement; (b) assign a unique 
identifier to each requirement; (c) for each requirement to 
be traced (say for example from a high level document to 
a low level document), locate all children requirements 
present in the lower level document; (d) for each low level 
requirement, locate a parent requirement in the high level 
document; (e) examine each high level traced requirement 
and determine if it has been completely satisfied by the 
low level requirements that were selected as links; (0 
prepare a report that presents the traceability matrix (low 
level requirements traced to high level requirements); and 
(g) prepare a summary report that expresses the level of 
traceability of the document pair (that is, what percentage 
VI LIIG I l l&l  I G V b I  IGyuIIGlIIGIlLJ W b I b  ~UlllylrLrly J U L l J l l b U ,  

what percentage of low level documents had no parents, 
etc.). 

Let us next examine how automation may facilitate these 
responsibilities. A tool could easily assist the analyst in 
the identification and subsequent extraction and “tagging” 
of requirements [(a), (b)]. Similarly, generation of 
requirements traceability matrix reports and traceability 
summary reports lends itself well to automation [(f), (g)]. 

SuperTracePlus (STP) [ 10,161, and commercial tools 
already address these items. The remaining items are of 
greater interest and importance to researchers and 
practitioners. Items (c)-(e) conceivably require the 
analyst to examine every low level requirement for each 
high level requirement. Even in a small document pair 
that consists of 20 high level requirements and 20 low 
level requirements, an analyst may examine 400 candidate 
links. 

If we build a tool to automate items (c) - (e), the analyst 
will still have certain critical responsibilities. These 

In lubb, a number of proprietary to~!s, such as 

include evaluating candidate links; making decisions on 
whether or not candidate links should be accepted or 
rejected; making decisions on whether or not to look for 
additional candidate links; making decisions on whether 
or not a requirement has been satisfied completely by its 
links; and deciding if the tracing process is complete. 
What can be automated, as shown in [l l] ,  is the 
generation of candidate links to address items (c) and (d). 
With this in mind, we move to the identification of the 
desirable attributes of an effective tracing tool. 

Most research in the area of requirements tracing has 
focused on models of requirements tracing [I91 or has 
looked at recall and precision to assess the accuracy of the 
applied linking algorithms [3, 141. To our knowledge, 
there has not been work published that details the 
requirements for an effective requirements tracing tool. In 
addition to specifying such requirements, we provide a 
validation mechanism for each requirement, and then in 
Sections 3 and 4 demonstrate that our tracing tool satisfies 
the requirements we have addressed to date. Note that we 
have chosen to define the requirements in an informal, 
textual narrative format. We do not claim that these 
requirements possess the quality attributes that should be 
present in formal software requirements. Rather, we offer 
them as a starting point for discussion with other 
researchers. 

From the perspective of a development manager or a 
safety manager (in the case of a safety-critical system), the 
most important attribute that a requirements tracing tool 
can possess is that its final results are believable and can 
be trusted. Similarly, the analysts who use the tool should 
have confidence in the candidate link lists provided by the 
software (addressing items (c) and (d)). Lack of this 

skarching for additional candidate links. We refer to this 
attribute as “believability,” and it constitutes the first 
requirement. 
Reauirement 1: 
Specification: 
“Believability” - The requirements tracing tool shall 
generate candidate links and shall solicit analyst feedback 
and shall re-generate candidate links based on the 
feedback such that the final trace shall very accurately 
reflect the theoretical “true trace.” 
Believability is constituted of three sub-requirements or 
sub-elements: accuracy, scalability, and utility. Each are 
discussed below. 
Accuracy: The extent to which a requirements tracing tool 
returns all correct links and the extent to which the tool 
does not return incorrect links. 
Scalability: The extent to which the requirements tracing 
tool is able to achieve accuracy for “small” tracesets as 
well as “large” tracesets. In this context, we define a 
“small” traceset to constitute 3000 combinatorial links or 

. .  . . .  .. . . . .  
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less. For example, a traceset consisting of 20 high level 
requirements and 50 low level requirements would have 
20 x 50 = 1000 combinatorial links. Any traceset with 
more than 3000 combinatorial links is considered large. 
Utility: The extent to which an analyst believes the tool 
has helped to achieve good trace results. If the analyst has 
(justified) confidence in the accuracy and scalability of the 
tool, the tool will possess utility for the analyst. In 
addition to analyst belief about accuracy and scalability, 
other items can impact utility. This is a very subjective 
item, and we are still in the process of elucidating its sub- 
elements. Thus far we have defined Operability and 
Process Enforcement. Operability is the capability of the 
software product to enable the user to operate and control 
it [4]. Process Enforcement refers to the tool 
implementing tracing in such a way that the analyst is 
guided through the process. 
Validation mechanism: 
The standard measures of accuracy are recall and 
precision. Accuracy can be measured objectively, but 
only when we have the theoretical “true trace” available. 
Even when we do not have such an “answer set” a priori, 
we can build an RTM using the tool, capturing the 
candidate links returned at each stage. Then, we can 
compare the candidate links supplied by the tool at each 
stage to the final RTM (treating it as the answer set). 
For scalability, we must examine the tool’s results for both 
small and large tracesets to determine that the accuracy 
has not been significantly degraded. Validation of Utility 
requires subjective measures and hence a separate 
experimental design. In addition, we must first establish 
accuracy and scalability before progressing to a subjective 
study, thus ensuring that the tool performs in such a way 

left for future research. 
Discussion: 
Believability is a high level, overarching requirement. 
Utility is important because in any tracing exercises other 
than controlled experiments, the theoretical “true trace” 
will not be known. Therefore, an analyst will decide 
whether candidate links are correct or not and will decide 
whether to search for additional candidate links. The 
analyst must feel confident that good results have been 
achieved by using the tool. 

Scalability will not be addressed in this paper as we do 
not currently have large tracesets with a “true trace.” 
Accuracy will be evaluated, though. Recall is more 
important in tracing than precision because we do not 
want analysts to have to search for additional candidate 
links. We also want precision to be as high as possible. 
But note that precision values can be a bit misleading. For 
example, 50% precision means the existence of one false 
positive for each true link, which would be relatively easy 
for the analyst to deal with. Improvement beyond 50% 
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does not provide as much benefit to the analyst as for 
example improving fiom 10% to 33% (which corresponds 
to improving from one true link out of 10 to one true link 
out of three candidates). Thus, drastic improvements in 
precision occur only at low percentages. The true 
measure of the effectiveness of a tracing tool lies in its 
ability to help an analyst find the correct links, as easily as 
possible. In earlier studies [ 1 I], we found that an analyst 
using the STP requirements tracing tool actually ended up 
with a worse final answer than the tool had originally 
proposed. If the analyst throws away good links, recall 
will decrease. If the analyst keeps bad links, precision 
will decrease. It is important that the tool prompts/assists 
the analyst to make the right choices (addressing items (c) 
and (d)). To that end, we have requirement 2, 
“discemability .” 
Requirement 2: 
SPecification: 
“Discernability” The requirements tracing tool shall 
generate candidate links and display their similarity 
measures in such a way to make it easy for the analyst to 
discern true links (from the theoretical “true trace”) from 
false links (candidate links that are not really links). 
Validation mechanism: 
There are four aspects to this requirement. In general, we 
want to ensure that the software communicates 
information (such as requirement text), process flow (such 
as what to do next), and results in a manner that facilitates 
the tracing process. We refer to this as communicability. 
In addition, we want to ensure that, as the stages of tracing 
proceed, good links (true links) rise to the top of the 
candidate link list and that bad links (false links) fall to the 
bottom. And we want to ensure that the similarity 

line between true and false links. To that end, we define 
objective measures for all the items above except 
communicability. “Good links rising” and “bad links 
sinking” are measured using DrffAR and Lag, while the 
existence of a cutoff is studied using different filtering 
techniques on the candidate link lists. These measures are 
formally defined in Section 4. 
Discussion: 
This requirement must be satisfied to support the 
satisfaction of Requirement 1. As has been suggested 
above, requirements tracing is an iterative process. An 
analyst will examine a subset of the candidate links and 
then determine if the links are good or not. This 
information, even for a small number of candidate links, is 
very valuable and should be fed back into the algorithms 
to support the generation of more accurate candidate links. 
If the tool does not provide the candidate links in a 
manner that facilitates discernment, the analyst will get 
frustrated with the tool and will not be able to efficiently 
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complete the task. That leads us to our final requirement, 
“endurability.” 

Rea uirement 3: 
Specification: 
“Endurability:” The requirements tracing tool shall 
generate candidate links and shall solicit analyst feedback 
and shall re-generate candidate links based on the 
feedback such that the process of requirements tracing is 
not arduous. 
Validation mechanism: 
Part of Endurability can be measured objectively by 
examining the time it takes to complete a tracing project 
using the tool. However, Endurability also refers to 
subjective satisfaction of the analyst with the tool and 
requires subjective measures and a separate experimental 
design. This study is left for future research. 
Discussion: 
In general, requirements tracing is a very time consuming, 
arduous process, even when using a tool. We strive to 
decrease the tedium of the tracing experience for the 
analyst (addressing items (c) - (e)). This is a subjective 
item, tying in with usability. A separate study is planned 
to assess analyst attitude toward our tracing tool. 

3. Effective requirements tracing with 
RETRO 

3.1 Why use Information Retrieval? 

The problem of requirements tracing boils down to 
determining, for each pair of requirements from high- and 

“similar.” Stated as such, requirements tracing bears a 
striking similarity to the standard problem of Information 
Retrieval (IR): given a document collection and a query, 
determine which documents from the collection are 
relevant to the query. In the tracing scenario, high-level 
requirements play the role of queries, while the “document 
collection” is made up of low-level requirements (these 
roles are switched if back-tracing is desired). The key to 
understanding whether IR methods can aid requirements 
tracing lies in examining the concept of requirement 
“similarity.” This concept is used by the analysts to 
determine the trace. We must see if requirements 
similarity can be modeled, or at least approximated, by the 
document relevance notions on which different IR 
algorithms rely. 

The major difference in the similarity concepts used by 
analysts and the measures used in IR algorithms is that 
human analysts are’ not limited in their decisions by purely 
arithmetical considerations. A human analyst can use any 
tool available in her arsenal to determine the trace, and 

. . .  . .  
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that may include “hunches,” jumping to conclusions, 
and/or ignoring assignments prescribed by any specific 
methodology. Such diversity of sources for human 
decision-making can be both a blessing and a bane to the 
requirements tracing process. On one hand, it may lead to 
discovery of hard-to-find matches between the 
requirements. On the other hand, human analysts do make 
errors in their work. These errors may be explicit, the 
analyst discards correct links and keeps incorrect ones, 
and implicit, the analyst does not notice some of the true 
links between the documents. Similarity (relevance) 
measures computed by IR algorithms are not prone to 
errors in judgment. But they may fail to yield connections 
that humans might notice despite differences in text. 

Even taking this observation into account, there is still 
enough evidence to suggest that IR methods are 
applicable. Indeed, the actual procedures employed by an 
IR algorithm in RETRO and by the analyst, working, for 
example with the STP tool [10,16] are very similar. In 
both cases, the lists of requirements from both document 
levels are scanned and for each requirement a 
representation based on its text is chosen. After that, in 
both instances, matching is done automatically, and the 
analyst then inspects the candidate links. 

3.2 RETRO 

In contrast with such comprehensive requirements 
management tools as STP [lo, 161, RETRO 
(REquirements TRacing On-target) is a special-purpose 
tool, designed exclusively for requirements tracing. It can 
be used as a standalone tool to discover traceability 
matrices. It can also be used in conjunction with other 

information is exported in a simple, easy-to-parse XML 
form. The overall look of RETRO GUI (Win32 port) is 
shown in Figure 1. 
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Figure 1. A screenshot of RETRO. 



At the heart of RETRO lies the IR toolbox (C++): a 
collection of implementations of IR methods, adapted for 
the purposes of the requirements tracing task. Methods 
from this toolbox are accessed from the GUI block (Java) 
to parse and analyze the incoming requirements 
documents and construct relevance judgments. The 
Filtering/Analysis component (C++) of RETRO takes in 
the list of candidate links constructed by any of the 
toolbox methods and prepares a list to be shown to the 
analyst. This preparation may involve the application of 
some cleaning, filtering and other techniques. The GUI of 
RETRO guides the entire requirements tracing process, 
from setting up a specific project, to going through the 
candidate link lists. At the top of the screen, the analyst 
sees the list of high level requirements (left) and the list of 
current candidate links for it, with relevance judgments 
(right). In the middle part of the interface, the text of the 
current pair of requirements is displayed. At the bottom, 
there are controls allowing the analyst to make a decision 
on whether the candidate link under consideration is, 
indeed, a true link. This information is accumulated and, 
upon analyst request, is fed into the feedback processing 
module (C++). The module takes the results of analyst 
decisions and updates the discovery process consistent 
with the changes. If needed, the IR method is re-run and 
the requirements tracing process proceeds into the next 
iteration. 

3.3 Information Retrieval methods in RETRO 

The IR toolbox of RETRO implements a variety of 
methods for determining requirement similarity. For this 
studv we have used two IR algorithms imdemented 
previously I I 1: y-iaj vector retrievai ana vector retrieval 
with a simple thesaurus. To process feedback we have 
used the Standard Rochio [9] method for the vector 
model. The methods used are briefly described below. 

3.3.1 Tf-Idf model. Standard vector model (also known 
as tf-idf model) for information retrieval is defined as 
follows. Let V = {kl, ...,W} be the vocabulary of a given 
document collection. Then, a vector model of a document 
u" is a 

computed as w, = tJ; ( d )  idJ;. Here @(d) is the so- 
called term frequency: the frequency of keyword ki in the 
document d. and id$, called inverse documentji-equency is 

tw;, ..., .wy of ~ey-wor& WeigfLts, -&.Xere . ~ i  .. is 

I .  

computed as idA = log, [ - d;; J, where n is the number 

of documents in the document collection and # is the 
number of documents in which keyword ki occurs. Given 
a document vector d=(wl, ..., wN) and a similarly 
computed query vector q=(q1, ...,qN ) the similarity 
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between d and q is defined as the cosine of the angle 
between the vectors: 

N 

C w i  'qi 

N 
sim(d, q )  = cos(d, q)  = , :=' 

i=l 

3.3.2 Tf-Idf + Simple Thesaurus. The second method 
used in [l 11 extends tf-idf model with a simple thesaurus 
of terms and key phrases. A simple thesaurus T is a set of 
triples <t, t ', W ,  where t and t ' are matching thesaurus 
terms and a is the similarity coefficient between them. 
Thesaurus terms can be either single keywords or key 
phrases - sequences of two or more keywords. The vector 
model is augmented to account for thesaurus matches as 
follows. First, all thesaurus terms that are not keywords 
(i.e., thesaurus terms that consist of more than one 
keyword) are added as separate keywords to the 
document collection vocabulary. Given a thesaurus 
T={<ki, kj, uiJ>}, and documentlquery vectors 
d=(wI, ..., wN), q=(qI, ..., qN), the similarity between d 
and q is computed as: 

N 

x w i  '4, + ' q j  +wj .q i )  
i=l &i,kj,a;,>ET 

sin(d, q) = cosq, q) = I hl 

3.4 Incorporating relevance feedback 

Relevance feedback is a technique to utilize user input 

Relevance feedback techniques for tf-idf methods adjust 
the keyword weights of query vectors according to the 
relevant and irrelevant documents found for them, as 
supplied by the user. More formally, let q be a query 
vector, and Dq be a list of document vectors returned by 
some IR method given q. Further, assume that D has two 
subsets: Dr of size R of documents relevant to q and Dirr 
of size S of irrelevant documents that have been provided 
by the user, Note that Dr and Dirr are disjointj but do not 
necessarily cover the entire set 04. We use Standard 
Rochio [9] feedback processing method: 

.- -_-- r- - . - I--- --_-____-_--- I- -._- .---.- .I_ I'o ". 

Intuitively, query q is adjusted by adding to its vector a 
vector consisting of the document vectors identified as 
relevant, and subtracting from it the sum of all document 
vectors identified as false positives. The first adjustment is 
designed to potentially increase recall. The second 



adjustment can potentially increase precision. The 
constants a ,  B, ? in the formulas above can be adjusted in 
order to emphasize positive or negative feedback as well 
as the importance of the original query vector (in our tests 
all three values were set to 1). Once the query vectors 
have been recomputed, the selected IR algorithm is re-run 
with the modified query vectors. This cycle can be 
repeated until the user is satisfied with the results. 

4. Evaluation 

4.1 Study design 

The purpose of our current study is to see whether 
RETRO satisfies the requirements specified in Section 2. 
We notice that all three major requirements have two 
components: objective, that can be measured by running 
tests on the tool, and subjective, examining user 
interaction with it. This study validates parts of the 
requirements that can be measured objectively. A study of 
the use of the tool by analysts for the purpose of 
determining its usability is planned next. In particular, in 
this study, we concentrate on determining the accuracy 
and discernability of the results of the analysis. 
To assess the accuracy and discernability of requirements 

tracing with RETRO, we performed tests on tf-idf and 
thesaurus approaches, as described in Section 3.3. We 
used a modified dataset from [ 1 I] based on open source 
NASA Moderate Resolution Imaging Spectroradiometer 
(MODIS) documents [ 13,151. The dataset contains 19 
high level and 49 low-level requirements. The trace for 
the dataset was manually verified and 42 correct links 
were found. 

process, analysts provide correct information to the tool. 
That is, both true links and false positives, when 
discovered are marked as such. At the beginning of each 
test, the traceset was loaded into RETRO and a particular 
IR method (tf-idf, or thesaurus) was selected. For each 
method, four different feedback strategies or behaviors, 
called Top I, Top 2, Top 3 and Top 4 were tested. The 
Top i behavior meant that at each iteration, we simulated 

links from the list for each high-level requirement. For 
example, for each high level requirement, Top 1 behavior 
examined the top candidate link suggested by the IR 
procedure that had not yet been marked as true. If the link 
was found in the verified trace, it was marked as true, 
otherwise - as false. After repeating the Top i relevance 
feedback procedure for each high level requirement, the 
answers were submitted to the feedback processing 
module. At this poid, the Standard Rochio procedure was 
used to update query (high-level requirement) keyword 

... -.- ---., .." ..-. " YIU ..-- ...... ....."'b ..I- *%.-..VU".. 

correct ana!yst feedhack for the top i unmwked czndidzte 

weights, and to submit the new queries to the IR method. 
The process continued for a maximum of eight iterations 
or until the results had converged. 
To check the accuracy of the results, we measured 

precision and recall of the candidate link lists produced at 
each iteration of the process. 
To check discernability, we devised and computed a 
number of measures that allow us better insight into the 
evolution of the candidate link lists provided by RETRO 
from iteration to iteration. As stated in Section 2, we want 
to ensure that (a) true links rise to the top of the lists, (b) 
false positives sink to the bottom of the lists, and that (c) a 
reasonable cut-off is possible that separates the majority 
of the true links from the majority of the false positives. 
The metrics measuring the degrees to which (a) and (b) 
were satisfied are: 
A X :  Average relevance of a true link in the list; 
A X :  Average relevance of a false positive in the list; 
DiffAR = ART - ARl? the difference between average 
relevances of true links and false positives; and 
&: average number of false positives with higher 
relevance coefficient than a true link. 
To measure the ability to establish a cut-off, we have 
examined a number of filtering techniques. A filtering 
technique is a simple decision procedure that examines 
each candidate link produced by the IR method and 
decides whether to show it to the analyst. In our study, in 
addition to the test run involving no filtering, we used the 
following three filtering techniques: 
Above 0.1: throw out a candidate link if its relevance is 
below 0.1. 
Within 0.5: For each high-level requirement, compare the 

top candidate link. The candidate link is retained iff its 
relevance is within 0.5 of the relevance of the top link. 
Top 42. For each high-level requirement i, retain the top ki 
candidate links, where ki is the number of true links for i. 
The filtered answer set contained 42 (or fewer) candidate 
links distributed exactly as in the answer set. 

..1 *. * .. , . c .  - ~ -~ c .  - - 

4.2 Results 

We address accuracy followed by discernability. As 
discussed above, recall and precision will be used to 
assess accuracy. TThe precision and recall results obtained 
in our tests are summarized in Table 1. The first column 
indicates the iteration, with iteration 0 being the iteration 
before the feedback. In each cell, precision is indicated 
first followed by recall. For example, iteration 7, Top 3, 
for Thesaurus method had precision of 24.6% and recall 
of 80.9%. The maximal precision and recall achieved in 
each experiment are highlighted and the maximal values 
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for each retrieval method are also underlined. The results 
are also visualized in Figure 2, which contains the 
precisionhecall trajectories for all experiments, grouped 
by the IR method used (top: tf-idf, bottom: simple 
thesaurus). 

The importance of the results ties back to the 
requirement of believability in Section 2. The candidate 
link lists generated using the thesaurus method are decent, 
but are greatly improved with analyst feedback. Also, 
improvements in recall are seen in early iterations (as 
early as iteration 3) and with the analyst only providing 
feedback on the Top 2 links. We feel that these accuracy 
results should also contribute to utility and endurability. 
Note that our shortcoming in recall is accounted for by a 
few requirements for which the IR methods did not return 
any true candidate links at iteration 0. This meant that 
feedback methods could not improve as they could not 
acquire positive feedback information. 

It 
doubles over six or seven iterations, but on iterations 1 
and 2 it decreases before starting to increase again with 
iteration 3. However, precision was improved without 
much impact to recall by using filtering. Table 2 
summarizes the results of applying different filters to the 
candidate link lists. For each filter and for each test run, 
the best precisionhecall pair was always achieved on the 
last iteration of the experiment - a contrast with the results 
without filtering. For each filter, the table also contains the 
differences in percentages for recall and precision between 
the list with no filtering and the list obtained by applying 
the filter. As evidenced in the table, the improvement in 
precision is significant for most filter---IR algorithm- 
behavior combinations. An important observation is that 

technique at some iteration does not preclude this link 

Precision does not appear to improve as much. 

vnmn. ro l  n ,w.-A;&tm 1L.b G,, +h- I:-& L.. - C I A - - : - -  
~ _. 
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from appearing again in a subsequent iteration. What this 
means is that if we filtered out some good links originally, 
they may reappear later with higher similarity measures. 
Filtering also ties to discemability. 

Recall that we use filtering to determine if there is 
eventual separation between good and bad links in the 
candidate link list, or the cutoff sub-element of 
discernability. Our results show that for above 0.1 in Top 
42 filters such separation is eventually achieved for most 
of the behaviors, as precision increases drastically while 
the decrease in recall is not large. For example, using 
thesaurus retrieval for Top 3 behavior and above 0.1 
filtering, precision is almost 40% with recall of 80%. 

The other sub-elements of discemability examine 
whether good links rise to the top of the list and bad links 
sink to the bottom. Recall that we use DiflAR and Lug to 
assess these. Figure 3 shows the changes in the DrffAR 
metric: the difference in average relevances between the 
true links (ART) and false positives (ARF) as the iterations 
progress. Intuitively, the larger the difference, the more 
likely it is that most of the true links will be at the top of 
the candidate link lists for high-level requirements. Note 
from the figure that the difference between ART and ARF 
is around 0.2 at iteration 0 for both tf-idf and simple 
thesaurus retrieval algorithms. At subsequent iterations €or 
both retrieval algorithms and all behaviors, DrffAR grows 
significantly, ranging from 0.489 to 0.758 at the last 
iterations. 

While DrffAR measures the quantitative separation 
between true links and false positives, Lug is a measure of 
qualitative separation. Lug is defined for each true link in 
the list as the number of false positives for its high-level 
requirement that have a higher relevance (Le., the number 

a list of candidate links is the average Lug of its true I&,. 
-CC-I .  .,. ,I I . . 1 . . . . . -  - .. 

Top 1 

Tf-IDF Thesaurus 
11.3%, 57.1% 12.2%, 64.2% 

8.4%, 59.5% 9.4%, 69% 

7.7%, 59.5% 8.3%,64.2% 

9.2%, 66.6% 8.6%, 61.9% 

~- 

9.9%, 71.4% 10.6%, 71.4% 

12.5%, 76.1% 12.5”/0,78.5% 

15.3%,76.1% 14.8%, 76.1% 

1 6%, 7 1.4% 

173%, 73.8% 

Table 1. Results of experiments: Precision and recall. 

Top 2 
Tf-IDF Thesaurus 
11.3%,57.1% 12.2%,64.2% 

6.9%. 59.5% 7.1%,66.6% 

9.2%, 69% 9.9%, 73.8% 

12.2%,73.8% 12.1%, 80.9% 

15.1%,73.8% 15.7%, 833% 

~ _ _ _ .  . 

17.9%, 71.4% 15.8%, 80.9% 

20%, 69% 17.6%, 833% 

23.3%, 69% 21.9%, 80.9% 

25.6%. 69% 25%. 78.5% 

Top 3 Top 4 

Tf-IDF Thesaurus TEIDF Thesaurus 
11.3%, 57.1% 12.2%,64.2% 11.3%, 57.1% 12.2%,64.2% 

7.3%,61.9% 7.8%, 66.6% 8.3%, 69% 8.60/0,76.1% 

11.6’?’0,73.8% 10.6%, 83.3% 12.1%,- 12.4%, 80.9% 

14.6%, 73.8% 13.6%, 80.9% 15.1%, 73.8% 15.3%,80.9% 

18.6%, 76.2% 17.4%,83.3% 13%, 61.9% 16.7%, 78.5% 

17.1%, 71.4% 18.1%, 83.3% 19.4%, 73.8% l8.6%, 78.5% 

20.9%, 73.8% 20.2%, 80.9% 22.7%, 71.4% 

21.4%, 69% 24.6%, 80.9% 22.7%. 71.4% 

22.7%, 66.6Yo 
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Note that when Lag=& total separation of links has been 
achieved all true links appear higher up in the lists of 
candidate links than all false positives. 

1....11: I,.IPI I 
. .  _. .. . _- ........ -. ..... 
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Figure 2. Recall, precision for all behaviors and IR 

Figures 4 and 5 show the progress of the Lag measure for 
tf-idf and thesaurus retrieval tests respectively. It can be 
observed that in all experiments Lug behaved in a similar 
manner. For both tf-idf and thesaurus retrieval, Lug starts 
at just above 6.  During the first 1-2 iterations, Lug grows, 
and for some experiments can go as high as 10. But at 
subsequent iterations,'-hg drops significantly, and in all 
but one experiment, finishes under 3. 

methods. 

Reqt. 

Believability 

Accuracy 

Scalability 

Utility 
Discernabilitv 

Communic- 
ability 

rising 
Good link 

Bad link 
sinking 

Cutoff 

Endurability 

Table 3. Paper Summary. 

Analyst 
Rsponsb. 

Items (c), 
(4 

Items (c), 
(4 

Items (e) - 
(e) 

Valid. ObjJ _yr 
precision 

precision 

DiffAR 

Obj. 

Study results 

Recall of 80.9%, 
precision of 39.2% 
exceeds other tools 
TBD 

TBD 

TBD 

DiffAR grows from 
0.2 to ,489-,758 at 
last iterations 

DiffAR grows from 
0.2 to .489-.758 at 
last iterations 

Lag drops on later 
iterations, ending at 
3 or less in all but 
one test 
TBD 

4.3 Discussion of results 
Table 3 summarizes the contributions of the paper. It is 

evident that RETRO supports the objective sub-elements 
of discernability. The measures ART, ARF, and DiffAR 
indicate that using the relevance feedback oution of 
iuinw yiuvius~ uit: iuraiysi wicn simiianry measures rnar 
clearly discern betweengood links and bad links. In 
addition, the Lag measure shows that by the later 
iterations, there are very few bad links at the top of the 
candidate link lists. 

The results of this study combined with the results of an 
earlier study [ 111 indicate that RETRO is a step forward 
with respect to other existing tools in terns of the 
accuracy sub-element of believability. In this study, 
PSTRO with rdevimce feedback 2nd thesaurus and 
filtering achieved recall of 80.9% and precision of almost 
40%. In a comparable but different study (different part 
of the MODIS dataset), STP achieved overall recall and 
precision of 63.4% and 38.8% and RETRO, without 
feedback or filtering, achieved overall recall and precision 
of 85.4% and 40.7% on the same dataset [l 11. 

The current study clearly points to avenues for 
improvement. For example, modifying our methods to 
ensure that we always return at least one true link per 
requirement at iteration 0 will greatly enhance our recall 
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in the process of feedback. We also noted that the poor 
results on just a few requirements greatly influenced the 
precision measures. By studying these “problem” 
requirements, we hope to gain insight that will allow us to 
improve the methods of RETRO. 

5. Related work 
In the context of our work, there are two areas of 

interest: requirements tracing and IR as it has been 
applied to the problem of requirements analysis. Each 
will be addressed below. 

Figure 3. Separation between average relevance of 
links and false positives. 

Separation between Relevance of Links and False Positives 
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Figure 4. Lag for TF-IDF tests. 
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Extensive work in the area of requirements tracing ,,as 
been performed by numerous researchers, including but 
not limited to: Pierce [17], Hayes et a1 [lo], Mundie and 
Hallsworth [16], Abrahams and Barkley [l], Ramesh 
[ 18,193, and Watkins and Neal [25] Casotto [7], Tsumaki 
and Morisawa [24], Sawidis [21], Bohner [5], Anezin 
and Brouse [2,6], aad Cleland-Huang [8]. A survey of 
work in the field of requirements tracing can be found in 

[ 1 13. In addition, Spanoudakis [22] proposes a rule-based 
method for generation of traceability relations. His 
approach automatically detects traceability relations 
between artifacts and object models using heuristic 
traceability rules [22]. 
Figure 5. Lag for thesaurus retrieval tests. 
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Recently, a number of researchers investigated the use of 
IR methods for requirements analysis. Antoniol, Canfora, 
De Lucia and Merlo [3] considered two IR methods, 
probabilistic IR and vector retrieval (tf-id0 in studying the 
traceability of requirements to code for two datasets. 
Following them, Marcus and Maletic [14] applied latent 
semantic indexing (LSI) technique to the same problem. 
While those papers studied requirements-to-code 
traceability, in [ 111 we have addressed the problem of 
tracing requirements between different documents in the 
project document hierarchy. 

6. Conclusions and future work 
RETRO was designed for the specific purpose of 

supporting the IV&V analyst in performing requirements 
tracing. The analyst’s responsibilities for finding and 
evaluating candidate links have been facilitated by 
RETRO. In addition, the objective sub-elements of the 
requirements of believability and discernability have been 
evaluated. RETRO supports accuracy and the three sub- 
elements of discernability of ensuring that good links rise 
to the top of candidate link lists, that bad links sink, and 
that a cutoff between good and bad links is apparent. 
Also, Science Applications International Corporation 
(SAIC), the developer of STP, is in the process of 
integrating the backend of RETRO (IR toolkit and 
feedback processing module) with the front end of STP. 
This is fbrther evidence of RETRO’s ability to support 
IV&V analysts. 

Future work can be separated into two directions: 
improvement of the underlying technologies (IR methods, 
etc.); and study of the analyst’s interaction with RETRO 
(subjective sub-elements of the requirements). Technical 
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enhancements include use of IR  methods better suited for 
work with small datasets, implementation of additional 
feedback processing methods, implementation of more 
intricate techniques for filtering and analysis of candidate 
link lists, and using IR techniques to predict the coverage 
or satisfaction of traced requirements by their matches. A 
study to determine scalability of RETRO will be 
undertaken. Finally, we will conduct a study of the work 
of analysts with RETRO. This will be  a subjective study 
to assess the utility sub-element of believability, the 
communicability sub-element of discernability, and 
endurability. 
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